Figs. 5a-b: The Bluephase Meter II, showing the tip diameter guide on the back of the radiometer and the irradiance recording
Limitations
The simplest and most dentist-friendly method for measuring LCU output in the office is a dental radiometer. Unfortunately, most previous studies have reported that dental radiometers cannot accurately or reliably measure irradiance from dental LCUs in mW/cm2 (light output).17-22 In fact, most dental radiometers claim an accuracy of only ±20 percent, most likely because most dental radiometers have only a narrow aperture where the light enters into the meter. As a result, different areas of high or low irradiance values may be measured depending on the position of the light tip over the aperture into the meter. Thus, the values may not represent the irradiance across the whole light tip (Figs. 4a-b).
Additionally, in some instances, the emission spectrum from the curing light may extend beyond what dental radiometers can detect. For example, Ivoclar Vivadent's Bluephase G2 and Bluephase Style deliver a wavelength of light from 385 nanometers to 515nm, and yet some dental radiometers don't measure light below 400nm or above 500nm.
Bluephase Meter II
The Bluephase Meter II is a new dental radiometer that uses a large sensor. It can measure both the power in mWatts and, when the light-tip diameter is entered into the meter, it can also calculate the irradiance (Figs. 5a-b). The manufacturer claims that this new meter can measure the power output from a curing light with an accuracy of ±10 percent, provided that the light tip is between 5-13mm in diameter.
In addition, the Bluephase Meter II can measure light from 385-550nm and report the irradiance from 300-12,000 mW/cm2. A recent study presented at the 2016 AADR meeting in Los Angeles reported that the meter met the manufacturer's specifications and could accurately measure the power from seven different curing lights tested.23
Conclusion
An easy to use dental radiometer that accurately reports the power (mW) and irradiance (mW/cm2) from their LCUs should result in more reliable curing and greater longevity of resin-based restorations. For medical/legal reasons alone, it's recommended that dentists record the power output from their LCUs when new and keep a daily record.1 They can then respond appropriately to any decrease in light output from the LCU.
Editor's note: This article was originally published in the July 2016 issue of Dentaltown magazine. Reprinted with permission. All rights reserved.
References
1. Price RB, Shortall AC, Palin WM. Contemporary issues in light curing. Oper Dent 2014; 39:4-14.
2. Al Shaafi M, Maawadh A, Al Qahtani M. Evaluation of light intensity output of QTH and LED curing devices in various governmental health institutions. Oper Dent 2011; 36:356-361.
3. Hao X, Luo M, Wu J, Zhu S. A survey of power density of light-curing units used in private dental offices in Changchun City, China. Lasers Med Sci 2015; 30:493-497.
4. Hegde V, Jadhav S, Aher GB. A clinical survey of the output intensity of 200 light curing units in dental offices across Maharashtra. J Conserv Dent 2009; 12:105-108.
5. Barghi N, Fischer DE, Pham T. Revisiting the intensity output of curing lights in private dental offices. Compend Contin Educ Dent 2007; 28:380-384; quiz 385-386.
6. Miyazaki M, Hattori T, Ichiishi Y, Kondo M, Onose H, Moore BK. Evaluation of curing units used in private dental offices. Oper Dent 1998; 23:50-54.
7. Ernst CP, Busemann I, Kern T, Willershausen B. Feldtest zur Lichtemissionsleistung von Polymerisationsgeräten in zahnärztlichen Praxen. Deutsche Zahnärztliche Zeitschrift 2006; 61:466-471.
8. Maghaireh GA, Alzraikat H, Taha NA. Assessing the irradiance delivered from light-curing units in private dental offices in Jordan. J Am Dent Assoc 2013; 144:922-927.
9. El-Mowafy O, El-Badrawy W, Lewis DW, Shokati B, Kermalli J, Soliman O, et al. Intensity of quartz-tungsten-halogen light-curing units used in private practice in Toronto. J Am Dent Assoc 2005; 136:766-773; quiz 806-767.
10. Friedman J. Variability of lamp characteristics in dental curing lights. J Esthet Dent 1989; 1:189-190.
11. Rueggeberg FA, Caughman WF, Comer RW. The effect of autoclaving on energy transmission through light-curing tips. J Am Dent Assoc 1996; 127:1183-1187.
12. Poulos JG, Styner DL. Curing lights: changes in intensity output with use over time. Gen Dent 1997; 45:70-73.
13. Strydom C. Dental curing lights--maintenance of visible light curing units. SADJ 2002; 57:227-233.
14. Strassler HE, Price RB. Understanding light curing, Part II. Delivering predictable and successful restorations. Dent Today 2014;1-8; quiz 9.
15. Pereira AG, Raposo L, Teixeira D, Gonzaga R, Cardoso IO, Soares CJ, et al. Influence of Battery Level of a Cordless LED Unit on the Properties of a Nanofilled Composite Resin. Oper Dent 2016; In press.
16. AlShaafi MM, Harlow JE, Price HL, Rueggeberg FA, Labrie D, AlQahtani MQ, et al. Emission Characteristics and Effect of Battery Drain in “Budget” Curing Lights. Oper Dent 2015; In press.
17. Leonard DL, Charlton DG, Hilton TJ. Effect of curing-tip diameter on the accuracy of dental radiometers. Oper Dent 1999; 24:31-37.
18. Roberts HW, Vandewalle KS, Berzins DW, Charlton DG. Accuracy of LED and halogen radiometers using different light sources. J Esthet Restor Dent 2006; 18:214-222; discussion 223-214.
19. Busemann I, Schattenberg A, Willershausen B, Ernst CP. Accuracy of Hand-held Dental Radiometers for the Determination of Power Output of Curing Devices. Das Deutsche Zahnärzteblatt 2008; 117:476-482.
20. Price RB, Labrie D, Kazmi S, Fahey J, Felix CM. Intra- and inter-brand accuracy of four dental radiometers. Clin Oral Investig 2012; 16:707-717.
21. Aravamudhan K, Floyd CJ, Rakowski D, Flaim G, Dickens SH, Eichmiller FC, et al. Light-emitting diode curing light irradiance and polymerization of resin-based composite. J Am Dent Assoc 2006; 137:213-223.
22. Kameyama A, Haruyama A, Asami M, Takahashi T. Effect of Emitted Wavelength and Light Guide Type on Irradiance Discrepancies in Hand-Held Dental Curing Radiometers. The Scientific World Journal 2013; 2013:7.
23. Price RB, Harlow JE, Kearns JO, Sullivan B. Power Accuracy of a New Dental Radiometer. AADR 45th Annual Meeting; JDR 2016; 95 Spec. Issue A: Abstract 412